UTILIZAÇÃO DE TÉCNICAS DE LEVANTAMENTO TOPOGRÁFICO PARA O MONITORAMENTO DE OBRAS DE CONTENÇÃO NA CIDADE DE MARECHAL DEODORO - AL

Talvanes Lins e Silva Junior¹
Monaira Cristiane Alcides da Costa²
Celiane Mendes da Silva³
Bárbara Cristiane Alcides da Costa⁴
Aline da Silva Inácio Cavalcante⁵
Lucas Barbosa Cavalcante⁶

Engenharia Civil

ISSN ELETRÔNICO 2316-3135

RESUMO

Sabe-se que a maioria das obras de escavação no âmbito da construção civil necessita de estruturas de contenção, as quais são formadas pela introdução de uma estrutura cuja rigidez é distinta daquela do terreno que conterá. Com isso, tem-se que o carregamento da estrutura pelo terreno provoca deslocamentos que por sua vez alteram o carregamento, num processo mútuo, ou seja, o projeto dessas estruturas é vinculado a cargas que dependem de deslocamentos. Em vista disso, torna-se necessária a avaliação dessas condicionantes neste tipo de estrutura e, principalmente, por meio do monitoramento dos deslocamentos da estrutura de contenção. A medição e previsão do desempenho do sistema de contenção confere maior segurança à obra, na identificação e tratamento dos fatores potencialmente críticos que possam afetar sua estabilidade estrutural, obtendo-se, assim, alternativas que possibilitem o impedimento do colapso da estrutura. Sendo assim, o presente artigo visa demonstrar os resultados obtidos do acompanhamento de uma estrutura de contenção em muro de arrimo, por meio de um estudo de caso na cidade de Marechal Deodoro, município alagoano, a qual foi monitorada, utilizando-se técnicas e instrumentais topográficos, a fim de se analisar a magnitude dos deslocamentos sofridos por essa estrutura diacronicamente. A partir das verificações, pode-se perceber que o muro sofreu deslocamentos da ordem de centímetros durante o período estudado, porém, dentro dos parâmetros determinados pelas normatizações vigentes.

PALAVRAS-CHAVE

Topografia. Deslocamentos. Contenções.

ABSTRACT

Metallic structures are construction systems that use relatively slim parts with high support capacity. Consequently, they are lighter structures compared to reinforced concrete, for example. For this reason, this type of structure becomes more susceptible to external actions like a wind. On the other hand, new technologies in the field of execution engineering developed with the aim of providing designers with more complex panoramas of the structures and dynamic components under which a building may be subjected. This study aims at a graphic representation through the computer modeling of the Sanctuary of Mercy with the use of the Autodesk Flow Design software. For this, a scale model was used, submitted to a virtual wind tunnel simulation, duly parameterized and proportional to the real scale. It was possible to represent graphically by computational modeling as persistence of the wind flow, expansion and pressures on the structure of the sanctuary with its variations from the passage in it.

KEYWORDS

Topography. Displacements. Containment.

1 INTRODUÇÃO

O crescimento gradativo de obras da construção civil vem ocasionando um acúmulo de cargas que se depositam sobre áreas que outrora não eram submetidas a tais solicitações. Desse modo, percebe-se que tal crescimento provoca alterações no comportamento da mesma e, principalmente, no que diz respeito a sua estabilidade, tendo como principal consequência os recalques diferenciais.

Na expectativa de se evitar um possível colapso da estrutura, tem-se que a mensuração da ordem de grandeza de tais deformações é de extrema importância a fim de se avaliar tanto à magnitude da solicitação a qual está submetida e a futuras evoluções do quadro de recalques sofridos, como ao grau de risco do acidente que poderá ser causado se a estrutura vier a colapsar.

Nesse contexto, tem-se que uma das principais vertentes que evidencia a importância do monitoramento geodésico são os desastres ambientais que podem ser ocasionados quando do seu rompimento. Os desastres podem ser caracterizados em função da sua origem, ou seja, tendo em vista o princípio que o desencadeia. Podem ter sua ocorrência por ações naturais ou antrópicas, sendo esta causadora de grandes

impactos sociais, desestruturando a sociedade e expondo-a a riscos, além de trazer danos e prejuízos tanto ambientais guanto socioeconômicos.

Como exemplos recentes de desastres ambientais ocorridos no Brasil, pode-se citar os rompimentos das barragens de rejeitos de Mariana e Brumadinho, acidentes que devastaram municípios inteiros, com inúmeras mortas e perdas irreparáveis.

Em vista disso, percebe-se que desastres desse nível ou menores podem ser evitados ou reduzidos com um monitoramento adequado das estruturas de contenção, por meio da produção de informações que demostrem o comportamento da estrutura, tornando, assim, possível a identificação da causa dos problemas, permitindo planejar o tipo de intervenção mais adequada a patologia encontrada.

Segundo Nadal (2008), uma das maneiras de executar o monitoramento do deslocamento de pontos ao longo do tempo é a aplicação de técnicas geodésicas, sendo as convencionais baseadas no uso de instrumentos como estações totais e níveis e na aplicação de métodos como triangulação, trilateração, poligonação e nivelamento geométrico.

As técnicas de mensuração geodésicas visam determinar a ocorrência de variações de um ponto ou de um conjunto destes em relação às suas coordenadas gradativamente. De acordo com Nadal (2008), as medidas com a finalidade de monitoramento podem ser feitas tanto verticalmente como horizontalmente, com o objetivo de determinar as coordenadas tridimensionais dos pontos.

Nesse cenário, a topografia se apresenta como uma importante ferramenta no processo de monitoramento de estruturas, podendo ser aplicado em diversas situações. Segundo Glisic & Inaudi (2003), o monitoramento estrutural pode ser aplicado de forma permanente, contínua ou periódica, seguindo o comportamento da estrutura.

Assim sendo, com o aperfeiçoamento tecnológico dos equipamentos disponíveis a topografia se torna cada vez mais precisa. Atualmente, o mercado dispõe de estações totais, receptores GNSS, níveis e demais equipamentos de altíssima precisão o que permite a medição de pontos com alta acurácia.

Em função do exposto, o presente escrito tem por objetivo a realização de análises e monitoramentos de obras de contenção, utilizando-se de técnicas inerentes ao levantamento topográfico, para que assim se possa contribuir com a prevenção da integridade estrutural delas.

2 MÉTODOS

Para alcançar o objetivo estabelecido, adotaram-se como metodologia de trabalho os métodos de Revisão bibliográfica e Estudo de Caso. O Estudo de Caso presume que a obtenção de conhecimento do fenômeno estudado se dá a partir da exploração intensa de um único caso, por meio da reunião do maior número possível de informações detalhadas, por meio de diversas técnicas (CORDEIRO, 2005).

Já o método de revisão bibliográfica, de acordo com Cervo e Bervian (1983) utiliza o procedimento bibliográfico para explicar conceitos e/ou problemas por meio de referenciais teóricos publicados em documentos, sendo esta, segundo Gil (1999), desenvolvida diante material já elaborado, principalmente livros e artigos científicos.

O trabalho foi desenvolvido em três etapas (QUADRO 1). Após a fase de pesquisa e revisão bibliográfica, realizou-se o levantamento topográfico no local de estudo, sendo a cidade de Marechal Deodoro a escolhida para o estudo, instalando a estação total num ponto geograficamente determinado por coordenadas e realizando a medição de cinco pontos determinados na estrutura de contenção.

A primeira medição realizou-se dia 06/04/2020 e as medições posteriores com intervalo de quinze dias entre uma e outra. E por fim, cálculo da movimentação total.

Quadro 1 – Etapas para elaboração da pesquisa

Etapa 1	Etapa 2	Etapa 3
Revisão de literatura acerca dos conceitos de: 1. Levantamentos topográficos; 2. Obras de contenção;	Realização de levantamento topográfico por irradiação para medição dos desloca- mentos na estrutura da obra.	Análise dos resultados e geração dos gráficos

Fonte: Autores (2020).

3 RESULTADOS E DISCUSSÕES

Com a determinação do local em que o equipamento foi instalado, foi possível a obtenção das coordenadas dos pontos a serem verificados na estrutura de contenção, conforme apresentado no Quadro 2.

Quadro 2 – Coordenadas dos pontos no levantamento

Pontos	Coordenadas	
Р	182355,1510	8924216,0813
P1	182361,2416	8924223,1214
P2	182373,2860	8924233,2540
P3	182384,3554	8924242,5623
P4	182394,2015	8924251,1018
P5	182406,1426	8924263,2530
Estação	182386,3026	8924230,3048

Os Quadros de 3 a 8 dispõem das novas coordenadas dos pontos obtidas primeiramente no dia 06/04/2020 e com a realização novas medições com intervalos de 15 dias e consequentemente a obtenção das distâncias.

Quadro 3 – Cálculo das distâncias no Ponto PO

	р		5 1.00 1.70
Data do levantamento	Х	Y	Distância (m)
06/04/20	182355,1510	8924216,0813	34,2490
20/04/20	182355,1505	8924216,0810	34,2496
04/05/20	182355,1502	8924216,0818	34,2495
11/05/20	182355,1480	8924216,0780	34,2531
18/05/20	182355,1420	8924216,0770	34,2589
25/05/20	182355,1410	8924216,0805	34,2584

Fonte: Autores (2020).

Quadro 4 - Cálculo das distâncias no Ponto P1

Data da la contracta	P1		Distância (m.)
Data do levantamento	x	Υ	Distância (m)
06/04/20	182361,2416	8924223,1214	26,0750
20/04/20	182361,2410	8924223,1145	26,0775
04/05/20	182361,2410	8924223,1200	26,0760
11/05/20	182361,2420	8924223,1216	26,0746
18/05/20	182361,2400	8924223,1315	26,0738
25/05/20	182361,2415	8924223,1205	26,0754

Fonte: Autores (2020).

Quadro 5 – Cálculo das distâncias no Ponto P2

Data do levantamento	P2		Distância (m)
Data do levaritamento	x	Υ	Distancia (III)
06/04/20	182373,2860	8924233,2540	13,3538
20/04/20	182373,2800	8924233,2510	13,3590
04/05/20	182373,2750	8924233,2535	13,3644
11/05/20	182373,2840	8924233,2530	13,3556
18/05/20	182373,2810	8924233,2500	13,3578
25/05/20	182373,2805	8924233,2555	13,3595

Quadro 6 – Cálculo das distâncias no Ponto P3

Data do levantamento	Р3		Distância (m)
Data do levantamento	x	Υ	Distancia (III)
06/04/20	182384,3554	8924242,5623	12,4169
20/04/20	182384,3553	8924242,5620	12,4167
04/05/20	182384,3554	8924242,5625	12,4171
11/05/20	182384,3555	8924242,5622	12,4168
18/05/20	182384,3553	8924242,5622	12,4169
25/05/20	182384,3552	8924242,5627	12,4174

Fonte: Autores (2020).

Quadro 7 - Cálculo das distâncias no Ponto P4

Data do levantamento	Р4		Distância (m)
Data do levantamento	x	Υ	Distancia (III)
06/04/20	182394,2015	8924251,1018	22,2487
20/04/20	182394,2016	8924251,102	22,2487
04/05/20	182394,2014	8924251,1019	22,2488
11/05/20	182394,2015	8924251,1022	22,2491
18/05/20	182394,2012	8924251,1020	22,2488
25/05/20	182394,2011	8924251,1022	22,2490

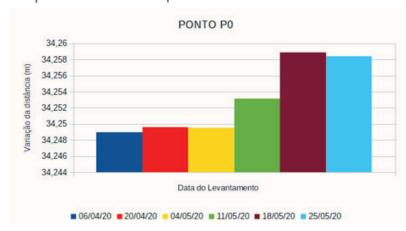
Fonte: Autores (2020).

Quadro 8 - Cálculo das distâncias no Ponto P5

	P5		
Data do levantamento	х	Y	Distância (m)
06/04/20	182406,1426	8924263,2530	38,4613
20/04/20	182406,1425	8924263,2531	38,4613
04/05/20	182406,1427	8924263,2529	38,4613
11/05/20	182406,1426	8924263,2532	38,4615
18/05/20	182406,1424	8924263,2530	38,4612
25/05/20	182406,1428	8924263,2534	38,4617

Fonte: Autores (2020).

Com os dados em mãos, foi possível calcular a movimentação total do muro durante todo o período de monitoramento, conforme Quadro 8.


Quadro 8 – Cálculo do movimento total nos pontos de controle

Pontos	Movimento Total
Р	0,94
P1	0,03
P2	0,57
P3	0,04
P4	0,02
P5	0,04

Fonte: Autores (2020).

Os Gráficos de 1 a 6 apresentam a variação das distâncias obtidas em metro, com relação à data do levantamento.

Gráfico 1 – Variação da distância no ponto P0

Fonte: Autores (2020).

Gráfico 2 – Variação da distância no ponto P1

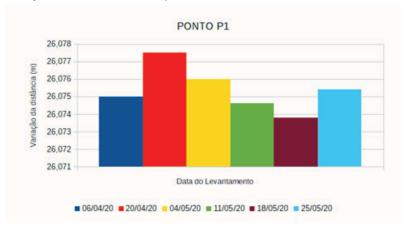
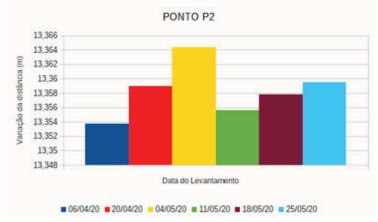
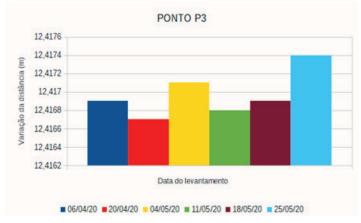




Gráfico 3 – Variação da distância no ponto P2

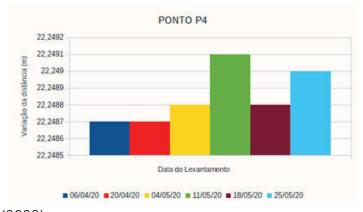

Fonte: Autores (2020).

Gráfico 4 – Variação da distância no ponto P3

Fonte: Autores (2020).

Gráfico 5 - Variação da distância no ponto P4

38,4618 38,4616 38,4616 38,4615 38,4613 38,4613 38,4612 38,4611 38,4611 38,4611 38,4611 38,4611

Data do Levantamento

■ 06/04/20 ■ 20/04/20 = 04/05/20 ■ 11/05/20 ■ 18/05/20 ■ 25/05/20

Gráfico 6 - Variação da distância no ponto P5

Fonte: Autores (2020).

Após o cálculo das diferenças entre as coordenadas dos pontos monitorados, entre as datas de estudo, considerando o primeiro levantamento realizado em 06/04/2020, com o último levantamento realizado em 25/05/2020, pode ser observado que algumas variações chegam perto da ordem do centímetro.

No Gráfico 7, observando os valores, fica claro que ocorreu um movimento significativo em dois dos pontos, sendo eles P0 e P2

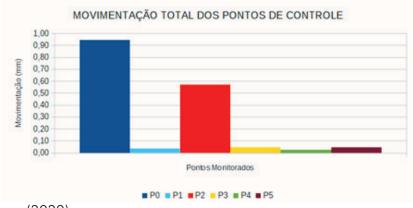


Gráfico 7 – Movimentação total nos pontos de controle

Fonte: Autores (2020).

4 CONCLUSÕES

O presente trabalho teve como objetivo analisar a eficiência do monitoramento, utilizando técnicas de levantamento topográfico, especificamente o método de irradiação em obras de contenção, utilizando uma estação total.

De acordo com os resultados obtidos nos pontos de controle do muro, todas as movimentações foram abaixo de 5cm e de acordo com a Norma Técnica de Estabilidade de Taludes (NBR 11.682), esse valor apresenta deslocamento de baixo risco.

Ciências exatas e tecnológicas | Alagoas | v. 6 | n.3 | p. 137-146 | Maio 2021 | periodicos.set.edu.br

Dessa forma, conclui-se que a utilização de levantamentos topográficos, no caso deste trabalho, o de irradiação, torna-se eficaz no monitoramento de estruturas de contenção e torna-se uma ferramenta adicional tanto para a fase de execução da obra, quanto para o período posterior da obra finalizada.

É válido enfatizar o baixo custo da operação e a segurança das informações, quando o levantamento é realizado corretamente, de acordo com as normas vigentes.

REFERÊNCIAS

CERVO, A.; BERVIAN, P. Metodologia científica: para uso dos estudantes universitários. São Paulo: McGraw-Hill do Brasil, 1983.

GIL, A. **Métodos e técnicas de pesquisa social**. 5. ed. São Paulo: Atlas, 1999.

GLISIC, B.; INAUDI, D. Components of structural monitoring process and selection of monitoring system. 6th International Symposium on Field Measurements in Geo-Mechanics (FMGM 2003), Oslo, Norway, 2003. p. 755-761.

NADAL, M. A. D. Controle e operação remota de estações totais robotizadas voltado à auscultação geodésica. 2008. Dissertação (Mestrado em Ciências Geodésicas) - Setor de Ciências da Terra, Universidade Federal do Paraná, Curitiba, 2008.

Data do recebimento: 23 de novembro de 2020 Data da avaliação: 11 de dezembro de 2020 Data de aceite: 12 de dezembro de 2020

1 Discente do Curso de Engenharia Civil do Centro Universitário Tiradentes - UNIT.

E-mail: talinsjr@hotmail.com

2 Discente do Curso de Engenharia Civil do Centro Universitário Tiradentes – UNIT.

E-mail: monairacristiane@hotmail.com

3 Discente do Curso de Engenharia Civil do Centro Universitário Tiradentes – UNIT.

E-mail: celianems@hotmail.com

4 Discente do Curso de Engenharia Civil do Centro Universitário Tiradentes - UNIT.

E-mail: barbara.bcc@hotmail.com

5 Engenheira Agrimensora, Pedagoga e Mestra em Meteorologia da Universidade Federal de Alagoas. UFAL.

E-mail: alineinacio91@gmail.com

6 Docente do Curso de Engenharia Civil do Centro Universitário Tiradentes - UNIT.

E-mail: cavalcante.lb@gmail.com

Ciências exatas e tecnológicas | Alagoas | v. 6 | n.3 | p. 137-146 | Maio 2021 | periodicos.set.edu.br