DETECÇÃO DE DIABETES: UM ESTUDO COMPARATIVO ENTRE ALGORITMOS DE APRENDIZADO DE MÁQUINA

DOI:

https://doi.org/10.17564/2316-3798.2025v10n1p389-404

Authors

Published

2025-07-17

Downloads

Download data is not yet available.

Abstract

ABSTRACT

Diabetes, a disease that has been growing worldwide, leads to organ dysfunction and a risk of premature death. Currently, machine learning models are being used as an auxiliary tool in the diagnosis of diabetes. In this context, this work aims to compare the performance of the XGBoost (Xtreme Gradient Boosting) and LightGBM (Light Gradient Boosting Machine) models for detecting diabetes. The performance comparison was performed using the Pima Indian Diabetes database, the SMOTEENN technique for class balancing, and the Optuna hyperparameter tuning library. The classification models were implemented in the Python language. The metrics Accuracy, Precision, Sensitivity, F1-Score, AUC, and Kappa were used to evaluate the performance of the models. Experimental results demonstrated that the LightGBM model presented better classification performance than the XGBoost model (Accuracy=99.1%, AUC=0.99, and Kappa=0.981).

Author Biographies

Aldino Normelio Brun Polo, Universidade Tecnológica Federal do Paraná (UTFPR)

Mestrando do Programa de Pós-Graduação em Tecnologias Computacionais para o Agronegócio - PPGTCA

Cidmar Ortiz dos Santos, Universidade Tecnológica Federal do Paraná (UTFPR)

Doutor em Ensino de Ciência e Tecnologia.

How to Cite

Azevedo dos Santos, J. A., Brun Polo, A. N., & Ortiz dos Santos, C. (2025). DETECÇÃO DE DIABETES: UM ESTUDO COMPARATIVO ENTRE ALGORITMOS DE APRENDIZADO DE MÁQUINA. Interfaces Científicas - Saúde E Ambiente, 10(1), 389–404. https://doi.org/10.17564/2316-3798.2025v10n1p389-404